{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# stemgraphic quickstart with categorical\n", "\n", "Import stem_graphic from stemgraphic.alpha" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "from stemgraphic.alpha import stem_graphic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load a data frame" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../iris.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
count150.000000150.000000150.000000150.000000150
uniqueNaNNaNNaNNaN3
topNaNNaNNaNNaNversicolor
freqNaNNaNNaNNaN50
mean5.8433333.0540003.7586671.198667NaN
std0.8280660.4335941.7644200.763161NaN
min4.3000002.0000001.0000000.100000NaN
25%5.1000002.8000001.6000000.300000NaN
50%5.8000003.0000004.3500001.300000NaN
75%6.4000003.3000005.1000001.800000NaN
max7.9000004.4000006.9000002.500000NaN
\n", "
" ], "text/plain": [ " sepal_length sepal_width petal_length petal_width species\n", "count 150.000000 150.000000 150.000000 150.000000 150\n", "unique NaN NaN NaN NaN 3\n", "top NaN NaN NaN NaN versicolor\n", "freq NaN NaN NaN NaN 50\n", "mean 5.843333 3.054000 3.758667 1.198667 NaN\n", "std 0.828066 0.433594 1.764420 0.763161 NaN\n", "min 4.300000 2.000000 1.000000 0.100000 NaN\n", "25% 5.100000 2.800000 1.600000 0.300000 NaN\n", "50% 5.800000 3.000000 4.350000 1.300000 NaN\n", "75% 6.400000 3.300000 5.100000 1.800000 NaN\n", "max 7.900000 4.400000 6.900000 2.500000 NaN" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe(include='all')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select a column with text." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyYAAAByCAYAAACmwMVOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADpRJREFUeJzt3X901fV9x/HX+96bm5sfkMSwhNwQwihpENCDq4K2PWgtnY1V0dGJP4Y/jk5bUPyBLJMdzsrAUnBoZbp6RBFwgqDiaqNb648pWsRadKMKTGAzQBISQQIhIZck97M/cjOTGBIJ5HwMfT7O+Rxuvp98v6/PXwmvfD/fe805JwAAAADwKeB7AQAAAABAMQEAAADgHcUEAAAAgHcUEwAAAADeUUwAAAAAeEcxAQAAAOAdxQQAAACAdxQTAAAAAN5RTAAAAAB4RzEBAAAA4B3FBAAAAIB3FBMAAAAA3lFMAAAAAHhHMQEAAADgHcUEAAAAgHcUEwAAAADeUUwAAAAAeEcxAQAAAOAdxQQAAACAdxQTAAAAAN5RTAAAAAB4RzEBAAAA4B3FBAAAAIB3FBMAAAAA3oV8L+CrLjk6siCYlhnxvQ4AwJfTUl/bGKvcttv3OgAAx6ffF5OtI09fIEmnb9t6b19cN5iWuSxn8pz6k3ltAEDfqXl+XprvNQAAjh9buQAAAAB4RzEBAAAA4F2vi4mZvWFm/21m/5kYOYnjyWa2xsx2mNm7ZjbsZC0WAAAAwKnpRJ8xudY59/tOx26SdMA5N8LMrpK0UNKUE8w56cysSNKTks6UVC/p5865hT2dd2jTrzJr16+c55oaJ0h2JJSRsyT/1sdXNdftD1StuOPOeMOhKZKLBJLTXsy9dtHc8KChzZJUuWx6SdP+PbMUjw+2UHjTwHMun5k5YWqNJH36wk9HHtn53nzX0jxKgeDuSMHo2blX3bepuzxJIpNMMskk84uZAIB+yjnXqyHpDUlnd3H815LOS7wOSdonyXqb09PYUjxywZbikQt6sf7Vkh5R612jLEnf7uq6KSPGFxWWlkXbhoWSX7Vw6jM5U+YPTz/zz8+TBaoif/qN7wfTs+cpEPrDwPGT/2zQpbOKLBReHxyQPbewtCwaGXbWxZLVRoaN/UH0lqUFgdSMhyyU/JvC0rLooEtnFcmsOpSROyt/2ooh4dyv/ZXMqnN++JPh3eUVlpZFySSTTDLJ7JhZWFoWTRkxvqivfucwGAwGo+/GiT5j8mRiG9ccM7PEsXxJuxOlp1nSQUnZJ5jTF+KSBkvKc84dcM693dMJteufynHNsQuzzr9+bsqwsY3ZJTPKA8mpLx2t3lHS0lB7ddKggsVZF9y4N23U+fWhrOjyloZDJZIUq/r46kAkfW3ulPkfJGXltWR+65pHXXNsYqxyW7h2w+qJsmBN/o+eeDo0IDued8NDr8uC+2p/u+qc7vIkiUwyySSTzI6ZAIB+rLeNRlJ+4t8Bkn4j6brE1x9JGtLu+3ZKyu6rZnUCd0zy1bqVq0rSDkl/2dV1298xaf3rn+KSHfx8qN6S01ZJOiJZXbu5OgWCOxN/+XstMd/+vMb0sy4eF0zPni/paKe5I6Gs6Izu8gpLy6JkkkkmmWR2zOSOCYPBYPTf0etnTJxzFYl/68xslaRxklZK2iOpQNIeMwtJypD0WW9z+kpi/Tcm7vT8taTHJD3b3TnJeV+vbPzkg1j+tOWjQwOy4+3nyu+fNC5SMOautv3RHQRDlcFI2oNDpq98uPNUxa7NFdYY3jB05rprOs/Vrn8q51h5kqRAsIJMMskkk0wAwKmgV1u5zCxkZoMSr5MkXSLpw8T0i5KuT7z+oaTXnXPuRBd6spnZFWYWTazNSarr6ZzMCVNrLJT8TtWTt89u2L4x5ei+XaG9q2efXbNu/qhgasYzsYqtsw68uSI33hTTvrIHhletvHuCJCUPHrGmpb72uprn5o6JN8V0cMOa7MrHf3yZJGWce+VrrqW5uPKJaZc0HagKNmzfmFK5bHpJ3fsvZXSXJ0lkkkkmmWR2zAQA9GO9uc0iKU3SJkmb1bp16yFJwcRcRK13HnZI+p2k4X15y+cEtnLdp9ZtXIcl/Zek73R13c4Pv2ddePNoC6eulVm1ZAcVTHo3Mvzsi6K3LC0IpGXdLwuUSzqsQHBb6LT829rOSxpUeLMCoY8kq5MFKgIpAx/5/20HRed910LhtyQ7ILP9lhR5ObvkjuLu8gpLy6JkkkkmmWR+MZOtXAwGg9E/hzn3lbuZcVy2jjx9gSSdvm3rvX1x3W+0ZCzLmTyn/mReGwDQd2qen5fWsH3jdt/rAAAcHz75HQAAAIB3FBMAAAAA3lFMAAAAAHjX67cL/mPRfPhAVvXz/zDM9zoAAF9S09HG1KJzfa8CAHAMLfW1jbHKbbs7H6eY9CCUnnUgZ/KcPb7XAQAAAJwKap6fl9bVcbZyAQBOORVLb71i1+K/WN3V3GevPhYtX3jJ9ua6/V3+Diy/f9J/7P2Xvzmvq7ndP5/ys90PT72TTDLJJJPME8/srMe3CzazZWr9AMUa59yYxLGfqPXT0j9NfNts59zLibl7Jd0kqUXSDOfcr7/MQnqLtwsGAAAA+o9jva37l2kvyyV9v4vjDzrnxiZGWykZJekqSaMT5/yzmQV7v2wAAAAAfwx6fMbEObfezIZ9yetNkvSMcy4m6X/NbIekcZLe6fUK+4CZTZC0zDk3ot2xVZI2O+d+1t25hzb9KrN2/cp5rqlxgmRHQhk5S/JvfXxVc93+QNWKO+6MNxyaIrlIIDntxdxrF80NDxraLEmVy6aXNO3fM0vx+GALhTcNPOfymZkTptZI0qcv/HTkkZ3vzXctzaMUCO6OFIyenXvVfZu6y5MkMskkk0wyO2Ye3vzKgP3/9tD7koIKJm0uvOeFy9v/DC//xyt+qZam0ZJSorcsHZqUldfSNrd7yTV/Fz9y6AZJKeFo8dV5Uxe/1TZXtXzGxKPV//MLSeFAasYjBbc/vahtjkwyySSTzOPLPJYTecbkNjPbbGbLzCwrcSxfUvsn7Pckjn3VvC0p1czGSpKZJUv6gaTnejqx9o3lSyRryrly3vj0MyZOaT5YM7N67d+fuXfl3bfGjxy+aOC4KyYNuuSeb7rmo0U1a+fcJEnVa+aMbfp01+LI0DNmRm957AwLRz489N6/LpKk+i1vpjVsf2d1MP20F/KnLR8T/pPChY27Nj9+ZOfvI93lSRKZZJJJJpkdM9PP/F5dYWlZUSgr+rdd/QwvvOeFSelnXXxBV3MFM1bdV1haViQLVHSey7thyauFpWVFFk5d13mOTDLJJJPM48s8lt4Wk19I+pqksZKqJC1OHLcuvrf7h1g8cM7FJT0vaXLi0Pck7XTO7ejuvNr1T+W45tiFWedfPzdl2NjG7JIZ5YHk1JeOVu8oaWmovTppUMHirAtu3Js26vz6UFZ0eUvDoRJJilV9fHUgkr42d8r8D5Ky8loyv3XNo645NjFWuS1cu2H1RFmwJv9HTzwdGpAdz7vhoddlwX21v111Tnd5kkQmmWSSSWbHTABA/9Wrtwt2zlW3vTazpZLKEl/ukVTQ7luHSKrs9er61rOSHpU0R60F5dmeTohVfRyVpM9eeXTjZ688mjjqQpac9kvFW/Kbaj75p/KFl8YTEwEFAjWSpJbmaLw59s3yhZdOaXe5o4c/fD3HxY7kK95cXL7w0q2fT7lwvPFwbqzq47pj5kkik0wyySSzUyYAoN/qVTExszznXFXiyyskfZh4/aKkVWb2gKSopCJJvzvhVfaNtyVlmtmZki6TNL6nE5Lzvl7Z+MkHsfxpy0eHBmTH28+V3z9pXKRgzF1t+6M7CIYqg5G0B4dMX/lw56mKXZsrrDG8YejMddd0nqtd/1TOsfIkSYFgBZlkkkkmmQCAU0GPW7nMbLVaH14vNrM9ZnaTpEVm9gcz2yzpO5LukiTn3EeS1kraIunfJU13zvX4oIsPie1c6yQtkbSrp21ckpQ5YWqNhZLfqXry9tkN2zemHN23K7R39eyza9bNHxVMzXgmVrF11oE3V+TGm2LaV/bA8KqVd0+QpOTBI9a01NdeV/Pc3DHxppgObliTXfn4jy+TpIxzr3zNtTQXVz4x7ZKmA1XBhu0bUyqXTS+pe/+ljO7yJIlMMskkk8yOmQCAfsw516/HluKRC7YUj1zQm3Mlna/WZ2BmH+u6KSPGFxWWlkXbRtaFN4+2cOpamVVLdlDBpHcjw8++KHrL0oJAWtb9skC5pMMKBLeFTsu/re28pEGFNysQ+kiyOlmgIpAy8JG2uZSi875rofBbkh2Q2X5LirycXXJHcXd5haVlUTLJJJNMMjtmBtKyFkmql9So1s/TqpcFPiksLYsm54+anJhrSPzsr5dUnzb6wm/nT1sxpO1rSXFJRyTVhzIH311YWha1UPjNxFyTpKOS6i2cuoZMMskkk8zjyywsLYumjBhf1NX/zXv8gMWvOj5gEQAAAOg/TuQDFgEAAACgT1FMAAAAAHjXq3fl+io52Vu4vnDdonOL+uL6AAAAAD7X758x6WvJ0ZEFwbTMiO91AAAAAKeClvraxljltt2dj1NMAAAAAHjHMyYAAAAAvKOYAAAAAPCOYgIAAADAO4oJAAAAAO8oJgAAAAC8o5gAAAAA8I5iAgAAAMA7igkAAAAA7ygmAAAAALyjmAAAAADwjmICAAAAwDuKCQAAAADvKCYAAAAAvKOYAAAAAPCOYgIAAADAO4oJAAAAAO8oJgAAAAC8o5gAAAAA8I5iAgAAAMA7igkAAAAA7ygmAAAAALyjmAAAAADwjmICAAAAwDuKCQAAAADvKCYAAAAAvKOYAAAAAPCOYgIAAADAO4oJAAAAAO8oJgAAAAC8o5gAAAAA8I5iAgAAAMA7igkAAAAA7ygmAAAAALyjmAAAAADwjmICAAAAwDuKCQAAAADvKCYAAAAAvKOYAAAAAPCOYgIAAADAO4oJAAAAAO8oJgAAAAC8o5gAAAAA8I5iAgAAAMA7igkAAAAA7ygmAAAAALyjmAAAAADwjmICAAAAwDuKCQAAAADvKCYAAAAAvKOYAAAAAPCOYgIAAADAO4oJAAAAAO8oJgAAAAC8o5gAAAAA8I5iAgAAAMC7/wMH4wURju0cdgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stem_graphic(list(df['species'].values));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From this, we see we have 50 setosa, 50 versicolor and 50 virginica, but you probably already knew that!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }